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out. The dependence of the course of the reaction, 
of the final average chain length and of the chain 
length distribution upon the rate constants, in 
particular upon the rate of initiation and upon 
the initial concentration, is shown. Two limiting 
cases can be distinguished. If the ratio between 
the rate of cessation and that of initiation is large, 
and the ratio of the rate of propagation and that 
of cessation is also large, then the average molecu-

In a previous publication3 polymerization re­
actions have been considered in which growth 
and termination are brought about by the inter­
action of stable monomer molecules with the 
growing polymer. The initiation of active chains 
was represented by a first order reaction. For 
processes which occur, with the aid of a true 
catalyst or in dilute solution, a first order initiation 
represents a possible mechanism. Second order 
activation, for instance, between monomers may 
be found in uncatalyzed chain polymerizations. 
In pure phase as well as in solution, first and 
second order processes may appear simultane­
ously, the first probably becoming more predomi­
nant as the concentration of monomer decreases. 
In this paper relations will be sought which allow 
a differentiation on the basis of experimental data 
between the two cases mentioned above. 

As pointed out in (I), toward the end of the 
reaction it is probable that growth and termina­
tion will proceed by mutual interaction of the 
growing chains as well as by interaction with 
monomer. The complexity of the rate equations 
does not permit a rigorous treatment of such 
cases. An exact solution can be given, if the 
monomer-polymer interaction alone contributes 
to the growth and cessation. Approximate 
expressions will be developed which allow an 
estimation of the polymer-polymer interaction. 

Cl) Presented at the One-Hundred-Fourth meeting of the Ameri­
can Chemical Society held in BuSaIo, New York. September 7th to 
11th, 1942. 

(2) Present address, Department of Chemistry, Howard Univer­
sity, Washington, D. C. 

(3) R. Ginell and R. Simha, T H I S JOURNAL, 65, 706 (1943), in the 
following designated by (1). 

lar weight will be large at the end and remain ap­
proximately constant during the last stages. If 
these ratios are small, then the average molecular 
weight will increase continuously and reach a 
small final value. I t is shown how the individual 
rates may be derived from a knowledge of these 
quantities. The theory of Schulz, and Norrish's 
and Brookman's results, appear as special cases. 
WASHINGTON, D. C. RECEIVED OCTOBER 3. 1942 

In regard to the general approach and the nota­
tion used, (I) may be consulted. 

Second Order Initiation of Nuclei.—The cal­
culations will be based on the following mecha­
nism for the three elementary processes 

Activation: Ni + JVi —> »i + Ni 
km 

Growth: re,- -f- JVi —> re/+i j = 1, 2 . . . 
kn 

Cessation: re,- + JVi —> Nj+i j = 1, 2 . . . 

The possibility that the initiation of a chain 
leads directly to the formation of a dimer would 
cause only minor changes in our final ex­
pressions. The same holds true for cessation 
without inclusion of monomer. Chain transfer 
can be treated by the same method, but has been 
omitted here. 

The rate equations assume now the following 
form 

^ L 1 Jh1JV1' -knNi T re,- - ^82JV1 T re, 

^ 1 = +Ai2JVi* - *,,JVi»i - *82JVirei (1) 

—• = kz%Ninj_i — Je22JV1K,- — knNinj-, j S 2 

^ = *82JVire,-_, j S 2 

w i t h t h e a d d i t i o n a l e q u a t i o n s 

. C O CO 

-r, T re,- = *isJVis - It12N1 T re,-
dt l l (2) 

CO CO 

T, T N, *i,JVi' - kmNi T1 n, 
at l l 

which follow directly from (1). As in (I) we 
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divide through by Ni and introduce the variable linearity of the above differential equation, the 

J t /•<» solution will consist of three terms. Each of 

o A ' ld ' ; *- = Jo Nldt (3) these will satisfy the equation resulting from the 
In <$> our equations are linear. The boundary introduction of the respective P r t e rm for nx in 
conditions are: for t = 0, <$> = 0, ns = 0, for j £ 1; t h e a b o v e differential equation. I t may be veri­

fied by insertion, that the P3-term leads to the fol­
lowing term in tij 

faj'-1 

Nj = 0, j £2, N1 = Nim. For t = » , <j> = 0„ , 
N1 = 0. The solution of system (2) and (1) 
will evidently consist of exponential functions. 
The secular determinant of system (2) has the 
solution 

- (fa + fa) '=*= V ( f a + fa)2 - 4 f a f e + 2k£j ) X1,, ( 4 ) 

XiXs = fa(fa + 2fa) ; Xi, X2 < 0 j 

We first assume the square root to be a real 
quantity. This amounts to a consideration of 
cases in which &32 > &is- The solution of (2) has 
then the form 

y"/t,- = AiOiie'11* + lhdue^ 
1 

Ni = kiOtie^^ + Ajajj«X«k 

(j — 1)! 

The contribution of the Pi-term on the other 
hand can be shown by induction to be 

ktii-
(£22 + fa '~TW=iPl{ g\i<t> —e—(*«+*»)* 

j-2 

E 
5=0 

[(fa + fa + XiW 

An analogous term results from the IVterm. in 
this way we find the final expression for «,- by 
remembering the definition of the P,- and trans­
forming the sums 

U1 = i \T i 'WA 1 SW-^ " < * " + * " ) * 

(fa + X2) 1 

(fa + X1) 
(Xi 

1 
X2) ( f a + fa - f X.) -, E i = j - i 

[ ( fa + fa+ XQ.fr]' 1 

(Xi - X2) (fa + hi + X2) i E 
[(fa + hi + Xa)1J1]' *>" 

S = V - I fa (fa + fa) + fafa 0' — 1) i j ' J i i 

and 

V,- = fa J 0 «/-ld0; j ^ 2 

(5a) 

the /^ and aik are constants, to be determined from (5a) gives the size distribution of the polymer. 
(2) and the boundary conditions. In this manner A comparison with the analogous formula (4a) 
we obtain, if the relations between Xi and X2 are of (I) shows that (5a) contains two terms of the 
taken into account same type as (4a), however with more complex 

A", 
JV1W 

i - i 

Xj — X2 

JV1W 
Xi — X2 

[ ( f a + Xi)eXi* - ( f a + X8)«X>«] 

fX20) 

and therefrom with the aid of (1) 
fa+ Xi 

«1 = AVwfa 
(Xi - X2) (fe + fa + Xi) 

€>>1* 
( f a 4- X2) 

(Xi — X2) (fa + £S2 +X2) 
fa 

gXic/> _ 

E ^ M <°> 

fa(fa + fa) + fa fa 
fa jVi(°>fa r« X i 0 

e - ( f e + *K)*t = pieXi* 4- i>2e
x«* + P1 -(foj + AiO* 

fa + 2fa Xl [fiXi0 «Xa0 , ~] 

-^- (fa + fa + X1) - — (ht + fa + X2)J 

(5) 

We can now find the % for j S 2. They obey the expressions in the rate constants. The third 
equation term is characteristic for the second order initia-

d«;/d0 = fa«,-i - (fa + fa)«, tion process. With increasing <j> the distribution 
together with the above expression for «1. approaches more and more the one found in (I). 

In order to solve this system of equations, we For the second sum becomes smaller than the 
start with the equation for «2. Because of the first, because X2 < Xj, and this holds all the. more 

XQ.fr%5d'
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+ kn + 2kn X1 

for the third term. The parameters of the 2 ^ J ^ 2) 
distribution curve, however, remain different 
from those determining its shape in equation 
(4a) of (I). The distribution of the stable 
Nj is best found for the first phases of the 
reaction by numerical integration. Before dis­
cussing the conditions prevailing during the last 
phases we must consider the range of variation of 
the variable <j>. Its connection with the time / is 
established by means of the relation 

"* dx 

1 N1 + m 

i - X 2 L 

t(<t>) -i: 
(X1 

N1[X) 

X2) 

0 (*3i 

dx (6) 
W» J o (k32 + X1)SX* _ ( ka2 + X»)eXt* 

from which 0 can be expressed in terms of t by in­
version. As shown in the appendix, this integral 
can be evaluated by series expansion 

1 •*-. /£32 + X2N 
N1UHM 

ksi + Xi E
/kg + X2V 

„_„ W + X1/ r 

N1 = N1^ cos n<j> -

JV1W) 

*s2 + V r + X1Z(X1 - X2)' 
[1 -e-\vt, e-HM-ii)*] (6a) 

It is not possible, in general, to solve this equa­
tion for 4> analytically. In an evaluation of experi­
mental data, the value of <£ corresponding to a 
given value of t can be found from a plot of the 
weight of the polymerized ma­
terial versus the time elapsed, 
in the manner described in (I). 

I t is easy however to invert 
(6a) for sufficiently large val­
ues of 4>. First it may be seen 
from (5) or (6) that <j>„ = ».« 
Evidently for our purpose we 
need consider the first term 

sum because 
The one in the 
be neglected. 

<U + XQgXl^ ^ (&M_+_Xj)£*»*~| W1 

X1 X2 J JV1W 
(7b) 

The equation for the weight average molecular 
CO 

weight requires a knowledge of the sum E j 2 -
2 

{rij + Nj). The final expressions are rather 
complicated. I t may suffice, therefore, to indi­
cate in the appendix the method of derivation. 

Before examining the relationships obtained, 
we will derive the analogous expressions for the 
case of complex roots Xi and X2 of the secular 
determinant. This situation will be encountered 
if we start to increase kxi at constant kn and &32. 
The solution will then be of a different type, but 
certain essential features will remain unchanged 
as shown in the following. 

We write 
X1,2 = X * in 

n = -1/&12C 
- ( A 1 2 + fe»2). 2(^22 + 2A32) — 

( £ 1 2 - M 5 2 ) 2 

Instead of (5) we obtain now 
(X + kn) sin M * ~ U 

(4') 

E n' = 

sin M 0 » 

JV1(O) 

sin n —<t> ) e x * ; ju0=» = t a n " 
X + ku 

U1 = 

&12 s i n ii<j> e x * 

N1^kn 

kiiikit + Ag2) + A12As2 

+ 
As2(A22 + £32) + X(A22 + 2As2) 

only in the 
(X1-X2) > 0. 
bracket can 
Therefore 

W»(A,2 

E ^ - A22 + 2Asi 

N1MeM 

A22 + 2k, 

X* A22 cos pnt> + 

sin /»<£ — A 2 2 e- (*»+*»]# 

_ FA12(A22 + 2A32) + X(A22 + A82) 
12 L M 

(5') 

sin M0 

(A22 + As2)cos n4> 

+ X1)Z(^) » -
(X1 T — ^ e-xi* (6b) 

Xi 

as may be also found directly from (5) by omitting 
the second exponential in the integration. 

The next step is the computation of the number 
and weight average chain length.5 The defini­
tion of ZJ leads, with the aid of equations (5) to 

l 
ZnW = 

A22 + 2k,: 
Ai2(A22 + A32) /ex"ft _ e**A 

(X1 - X2) V X1 X2 / 
(7a) 

(4) The alternative of making 2Vi = 0 by setting the two expres­
sions in the bracket in (5) equal, is excluded. It can be seen that 
this would make ^00 < 0 because X* < Xi. 

(5) E. O. Kraemer and W. D. Lansing, / . Phys. Chem., 39, 163 
(1935). 

(6) See the appendix of (I). 

Explicit expressions for the «,• may be omitted. 
They can be found by collecting the real and 
imaginary terms in (5a). The end-point of the 
reaction corresponds to a finite value for ^00, 
found by setting the two terms in Nx equal to 
each other.7 The general integral (6) leads again 
to complicated expressions. I t is possible how­
ever to expand sin/j (<£« — <i>) and retain the first 
member only, if ku and therefore ji are small 
enough. (6) then reduces to an exponential 
integral. The first approximation valid for the 
last phases of the reaction, when X(<£„ — <j>) <t£ 1, 
gives 

(7) The alternative ^0 5 = » must be rejected since it causes Ni 
to become a periodic function. 
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*» (0» -</>)» exp. [ - N^Vkuika + hi) eU« t] (6b') 
kn + 2h; 

N1 « N1W (0„ - 4>Wkn{km + A32) eH 

if the definition of sin JU0M is introduced. We 
furthermore obtain for the number average 
molecular weight 

hi + 2 ^ 

hi + (hi + hi) (cos fi<t> sin p<t>)e>4> 
Zn(<t>) = 

Z „ ( 0 ; i & 2 ) = b - ̂ w^l ̂ +2^ 
hi + e x H S m M [hiihi + 2Aa2) + hi X] -Ass cos ti(j> \~m{k (7b') 

« + 2hi) 

A comparison of the per t inent results with 
those obtained in (I) for a first order creation of 
nuclei shows one simplification: an exact ex­
pression for the end-point of the reaction, as ex­
pressed in terms of <£, can be given. $ » i s infinite, 
if k12 is sufficiently small to make the roots Xi 
and X2 real. Otherwise i t is given b y equation 
(5') . Of course, also in (I) there was a rather 
sharp distinction between the case of approxi­
mately equal initiation and cessation velocity 
and t ha t of small initiation rate, as shown in 
the respective equations (5a') and (5a") of paper 
(I) and also in the corresponding expressions for 
the mean molecular weight of the end-product 
formed. Because of the above simplification 
exact expressions can also be given for the final 
molecular weight. Equations (7a) and (7b) yield 

lim Zn = Hm Z (j S 2) = *!L+2*» ( 7 c ) 

This equation becomes identical with the cor­
responding one for a first order initiation (6c') in 
(I) in the limit of vanishing ku. Here the result 
holds also for a finite value of ku. From a practi­
cal s tandpoint however the situation is identical 
in bo th cases. If we set for instance ku = 1O-5, 
k22 = 1O - 2 (which is a reasonable assumption 
for the production of a fairly high molecular 
weight product) , equation (4) requires a 
value of the order of magnitude of 10 ~9 or less 
for £12, if (7a), (7b) and (7c) hold. On the other 
hand, if we set in equation (6c') of paper (I) 
kn = 1 0 - 9 , retain the above values for kn and k& 
and make NiW = 8.74 (styrene polymerization 
in pure liquid phase), we arrive practically a t 
the same result for the number average molecular 
weight. If, in the above example, the ra te of 
initiation is increased b y one power of 10, the 
roots Xi and X2 become complex quantit ies. (7a') 
and (7b') then yield 

lim Zn = lim Z, (j g 2) = — - -
(-•« t->-<o kn 4- v hi(hs + hi)e**°> 

(7C) 
This expression is found by introducing the de­
finition of 4>-> into the trigonometric expressions 
of (7a ') . As is to be expected in such cases, the 
final molecular weight depends upon the rate of 
initiation. T h e greater i ts value, the smaller 

the average 
chain length of 
the end-product. 
A comparison 

with equation (6c') of (I) however shows tha t this 
dependence is less pronounced here. I t is given 
approximately b y \/&i2 because eX4"° varies only 
slightly with kn. Furthermore, in the region 
ku = kn = 10~7 to 10- s , kn = 10~2, k32 - 10-6 , 
a second order initiation of nuclei will yield a 
smaller Zn because the term added to k32 in (7c') 
will be slightly larger than the corresponding one 
in formula (6c') of paper (I) . On the other hand, 
if ku and ksi are of the same order of magnitude, 
equations (5a') and (6c) in (I) give for the number 
average chain length 

V WKhi + hi) 
2ku 

For the values of k22 and £32 previously chosen, 
Zn will again be smaller in the second order case. 
In purely thermal polymerization reactions there­
fore, a second order initiation process should, 
under equal conditions of growth and cessation, 
lead to a shorter final number average molecular 
weight than a first order one if k\2> entering (4'), 
is not too small. Considering tha t in ordinary 
reactions second order constants are usually 
somewhat larger than first order ones, this should 
be t rue all the more. Also in a combined first 
and second order initiation reaction, the intro­
duction of the latter mechanism will tend to 
decrease the chain length t ha t would have re­
sulted from a simple first order process. In order 
to submit these conclusions to a direct experi­
mental test, it would be necessary to compare 
reactions possessing equal values of all the three 
rates and proceeding according to first and second 
order initiations, respectively, a situation in­
frequently met with. The dependence of the 
final chain length upon temperature mus t be 
determined to a large extent by the temperature 
variation of the initiation velocity, because i t 
possesses the largest activation energy. If we 
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start therefore from a region in which Zn is in­
dependent of h (be it a first or second order 
process), a temperature increase should first lead 
to a greater drop of Zn (and Zw) if the initiation 
is of second order. Later on, however, this 
dependence must become less pronounced in 
reactions leading to long chains because of the 
square root in formula (7c') as compared with 
the linear term in (6c') of (I). However, if it is 
possible to raise the temperature so far that 
h « &3 (Zn of the order of magnitude of 100), 
this distinction between first and second order 
process tends to vanish, kw in the denominator 
of (7c') becomes small compared with the square 
root term; (7c') and the above equation for Zn 

shows then approximately the same dependence 
upon the three rates; the exponential changes 
only slowly with km. 

A second and sharper distinction between first 
and second order initiation reaction can be found 
in the dependence of the final molecular weight 
upon the initial concentration. While at a given 
time /, Zn(<j>) depends upon iVi(0) because of equa­
tion (6), this holds no longer for the final molecular 
weight, as given by (7c) and (7c') in contra­
distinction to the result shown in Fig. 7 of paper 
(I). Here all the quantities determining Zn 

and Zw contain the initial concentration as factor, 
because all the elementary steps in the chain 
reaction are of the same order. iVi(0) therefore 
cancels out, if the ratio is formed. Previously, 
however, JVi(0) appeared as an additive quantity 
(equation (4) in (I)). The considerations pre­
sented in (I) in regard to the dependence of the 
rate of change of Zn in the course of the reaction, 
remain unchanged. If the rate of initiation is 
smaller than the other two, the average chain 
length will become the sooner constant, the smal­
ler &12. 

In (I) it was pointed out that the total number 
of polymer molecules which equals the ratio 

W-r. 

at any given time t, gives a straight line with the 
slope &n (apart from a small region in the neigh­
borhood of the origin), if plotted versus (j>. 
Here however we obtain a curve the slope of 
which decreases steadily with increasing 4, (Fig. 
5). This conclusion can be drawn from the 
denominator of equation (7b) as well as of (7b'). 
It allows a sharp distinction between first and 
second order activation of nuclei. The deter­

mination of the individual rates requires more 
effort here, especially in cases of high temperature 
polymerization. Such a situation is described 
by the equations with trigonometric terms. After 
<$> as function of t has been determined, it is best 
to make an estimate of kn and ks& from a measure­
ment of the final chain length (7c'), and then turn 
to the equation for WP 

Wp « M0(N1W - N1) 

as a function of <j>. In the case of real roots the 
procedure is somewhat simplified, because (7c) 
gives immediately the ratio kw/kn and equation 
(5) for JVi can be evaluated more easily. 

As in (I) we can investigate whether an over-all 
order of the reaction can be defined by cal­
culating 

6N1 = NidNi 
&t &<t> 

If equation (5) is applicable, we have 
AN N^ 
=£r « X1 . ' , (ksl + X 1 ) ^* « X1AT1(O) 
CI9 A1 — A2 

This relation holds only if |X2| and <j> are so large 
that the second exponential in (5) can be neg­
lected. The over-all reaction is therefore during 
its later stages represented by a second order 
process with a velocity constant 

(&S2 + kn) 

This expression in turn is valid only if its value 
is small compared with (A32 + kn) /4 , as may be 
seen from the definition (4) of Xi. If further­
more kn ^ £32, we find an over-all second order 
rate with a constant (£12̂ 22) (£32)_1. In the pre­
vious publication we found under similar approx­
imations the same expression for a first order 
over-all rate. 

If, however, equations (5') and (6b') ought to 
be consulted, the above procedure does not 
yield a simple order for the rate of decrease of JVi. 

It appears therefore that the over-all reaction 
is approximately of the first or second order in its 
later stages, as defined by the nature of the 
approximation, according to whether the rate of 
initiation of active nuclei follows a first or second 
order process. The over-all rate is in both cases 
given by the product of the velocities of initiation 
and growth, divided by that of the breaking of 
chains, if £22 ^ hi- However, this conclusion 
can be reached only if the rate of initiation is 
negligibly small in comparison with that of 
cessation. Because of the conditions imposed 
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by equation (4), this latter restriction is much 
more stringent in the case treated at present. 
Naturally this result depends also upon the order 
of the second and third step of the chain process. 

Figures 1 and 2 show for one particular ex­
ample the progress of the polymerization as given 
by equations (o') and (7b'), respectively. The 
molecular weight used was that of styrene and 
the initial concentration was assumed to be 8.74 
mole per liter. As in the previous paper an in­
duction period occurs. It depends here in a 
more complicated manner upon all three rates. 

100 

80 

60 

40 

20 

10 40 20 30 
Time in hours. 

Fig. 1.—Percentage polymerization versus time: kn = 
10 - 8 mole - 1 liter sec. - 1; km — 10~2 mole - 1 liter sec. - 1; 
km = 10 - 5 mole - 1 liter sec. - 1 . 
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40 

Fig. 
time: 

-Change of number average chain length with 
= 1 0 - 8 mole - 1 liter sec. - 1; fe = 1O-2 mole - 1 

The reason, however, for its appearance in our 
theory is the same, namely, the nature of the 
boundary condition assumed at / = 0 for the 
active nuclei. 

Figure 3 shows the dependence of the final 
average chain length on fe12 at constant k^ and 
k&. These curves have the same general shape 
as those for the corresponding plot for ku in (I) 
and hence the same general conclusions hold. 
However, it should be noticed that at any given 
value of ki (the hi and fe33 being the same) the 
value of Zn is lower in the case of second order 
initiation than in the case of first order initiation 
as previously discussed. 

800 -
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IM 

VII 

N! e 400 

200 

io-

_ 

-

A 

B " • -

-

-

-

1O-7IO 10" 

Fig. 3.—Final number average chain length versus rate 
of initiation: A, fe = 1O-2 mole - 1 liter sec. - 1; k-n =» 10~5 

mole - 1 liter sec. - 1; B, kw = 1 0 - 2 mole - 1 liter sec. - 1; 
kn — 1O-4 mole - 1 liter sec. -1 . 

Figure 4 gives the dependence of the final 
number average chain length on fe32 at constant 
few and hi- Here the curves are very similar to 
those in Fig. 6 in (I) and the same general con­
clusions may be drawn. It should be noted, 
however, that the scale in Fig. 6 in (I) is different 
from that in Fig. 4. This choice of scale was the 
result of the choice in values of kn- They have 
been chosen smaller throughout than those in 
Fig. 6 of (I) since this brings about a case of more 
marked dependence of Zn on fes2-

Finally the size distribution of the growing 
polymer as given by equation (5a) or a corre­
sponding expression found therefrom for complex 
Xi and X2, may be briefly discussed. As in paper 
(I) we propose merely to show that Schulz'ss 

expression for the number of stable chains of 
liter sec. ' ; k%» 10- nole ' liter sec. '. !8) (V V. Schulz , Z. physik Che . BSO. 37'.) '19.W). 
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Fig. 4.—Final number average chain length versus rate 

of termination: A, ka — 10~8 mole-1 liter sec.-1; kn — 
10 - ! mole -1 liter sec.-1; B, ku = 1O-' mole-1 liter 
sec.-1; kn = 10"' mole-1 liter sec.-1. 

polymerization degree "j" is the limiting value 
for &12 —* 0. Only in this case do Schulz's ele­
mentary statistical considerations and our theory 
lead to the same result. We can for this purpose 
restrict ourselves to the case treated in (5a). I t 
has already been pointed out after the derivation 
of this equation that it assumes the same func­
tional type as (4a) in (I), if the value of <j> is 
chosen large enough to permit an omission of 
the second and third term in the brace of (5a). 
As shown previously by Dostal9 we can approx­
imate the sum by a step function equal to exp. 
{{hi + £32 + Xi)#}, if j is smaller than the ex­
ponent and equal to zero if the reverse inequality 
holds. In between, there will be a transition 
region, the contribution of which can however be 
neglected, if <f> approaches <j>„ — » . Accord­
ingly (5a) reduces to 

k\i (kn + Xi) ( h 
lim »y_i = JVi<» 

feiS + Xl) / ^22 \j-l 

h — Xs) \hi + km + Xi/ 
«Xi* 

£22 (Xi - Xs) \&2s + km + Xi; 

This expression can now be integrated from zero 
to infinity because of the nature of the step func­
tion, and gives in this fashion the limiting value 
for Nj according to (5a). Then we neglect the 
terms of higher than the first order in fat in 
equation (4) for Xi and X2. In the result so 
derived for Nj we set throughout ka = 0 and 
obtain finally, if kn » k& 

lim JV,- » JViw> (1 O)2O"' -

a = kn/(ka + &ss) 

This is Schulz's8 equation. As on previous 
occasions, the range of validity of the approxima­
tion is smaller than in the first order case. If 
for instance A22 = 1O-2, £32 = 1O-6, then for 
fat S 1O-10, the formula becomes satisfactory. 

0.012 
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j -J- : 
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Fig. 5.—Total number of polymer molecules vs. syn­
thetic time: kn = 10 - s mole-1 liter sec.-1; k& = 10 -2 

mole-1 liter sec.-1; kn = 10 - s mole-1 liter sec.-1. 

With decreasing values of the rate of initiation, 
furthermore, the final average chain length and 
the final distribution of polymer sizes is reached 
sooner in the course of the reaction. Schulz's 
result, however, as already pointed out by him­
self, is obtained only under special conditions. 
It may be seen by integration of the above limit­
ing form for My-1, that for larger values of Ai2, 
the expression for Nj as function of the degree of 
polymerization "j" will be 

lim Nj 
t -*-» *"™»*»ML+£+»,r 

where the function / depends upon all three 
velocity constants. For the mechanism dis­
cussed in the preceding publication, we obtain 
for larger values of fax a formula of a similar type 

lim Nj » r— &82 0o 
«22 

/ 622 Y - 1 

U22 + w 

(9) H. Postal, Monatsh., ST, 1 (1935). 

as can be seen from (4a) in (I). The approxima­
tions involved in the derivation have been pointed 
out in the discussion of Schulz's distribution in (I), 
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£»(*) 

("w + rJ[ 
Hm Zn « 

ku/ L.hi 

&22 + 2&J2 

&32 + 
kn(k?t + hi) 

Combined First and Second Order Initiation 
of Nuclei.—As mentioned in the introduction, 
the possibility of a simultaneous or successive 
appearance of second and 
first order initiation of 
nuclei should be ad­
mitted. The further al­
ternative of activation by 
means of «y chains (chain 
transfer) has already been pointed out 
ive appearance of second and first order starting 
reactions should reflect itself in the rate of in­
crease of the average chain length, as discussed 
before,10 and will of course influence the be­
havior of the over-all reaction. We shall deal 
here only with the simplest possible case by 
assuming a simultaneous first and second order 
creation of active monomer. Instead of (1) and 
(2) we obtain then by division through TVi 

« 

be calculated in good approximation by omitting 
the second exponential in Ni. For the number 
average chain length we find now 

kii 

+ 2k3; XJ 
(hi + k: e^*\"|_ kn 

Xs / J kn 
(8) 

dJVi 
d<j> 

dwi 

d(j> 

kn 

- -(hi + kti)ni + A1JiV1 + ku 

T^ ») = — *S2 T^ flj + AlJjV1 + ku 

( l a ) 

- r - V N1 = - £22 T nj - Ai2JVi 

with the solution 

N1 
(*" + E) 

XI 
[(hi + X1)**!* - (kS2 + X2)eX^] 

(*»+£)*. 
Xi — X2 

(«Xi0 — ^ * * ) 

Because for <£ = 0, % = 0; £iV} = Nim, it 
1 

follows from (la) and (5b) that «1 will turn out 
as in (5) except for the replacement of the factor 

N1^ by (Nim + ~). The same will be true for 

the rest of the w,-, j jg 2. ]£ iV} will also contain 
1 

this factor and furthermore an additive constant 
—kii/ku. Xi and X2 retain their original meaning. 
As is to be expected, the end-point of the re­
action, N1 (#„) = 0, corresponds now to a 
finite value of <j>. The ratio of kn to kn would 
probably be of the order of magnitude of one or 
less. As an estimation of all quantities in (5b) 
shows, 4>a will have a very large value. I t can 

(10) See page 718. 

N^ (hi + Xi) 

Success- This latter equation holds if the second exponen­
tial can be neglected throughout, Because of 
the smallness of kn and the usually large value of 
$m this is permissible. This equation may be 
compared with equation (6c') in (I) describing a 
first order initiation, if ku <§C &32. This condition 
must also be fulfilled here if <j>„ is to be deter­
minable in the above manner. For kn and ka 

should be of the same order of magnitude, and 
kn must be small enough, to make Xi and X2 real. 
For jfeia = 0, (6c') in (I) and (8) become identical. 
For finite kn, equation (8) gives a smaller Zn than 
(6c')- The introduction of a second order ini­
tiation process causes a shift of the average 
polymer size to smaller values than those ob­
tained by a simple first order initiation. The 
effect, furthermore, is determined by the initial 
concentration. At large concentrations, the re­
action will follow essentially the pattern given by 
a second order initiation and the molecular weight 

will, at the end, be independent of the 
rate of initiation. In dilute solution, 
however, Zn depends upon kn and kn-
This influence of the initial concentra­
tion on Zn works in the same direction 
as that found in equation (6c') of (I). 

An experimental distinction of the various possi­
bilities for the initiation reaction should be 
possible on such a basis. No essential change 
occurs, if kn becomes so large that Xi and X2 are 
complex quantities. The equation for JV1 may 
immediately be found from equation (5') and 
(5b). Furthermore 

t 
(5b) 

Hm Zn = 

hi + 2*82 

+ ttM + W f 1 + J H . ^ s i n J40CO • e * * t 

with 

C O S fl <t>a 

(X + hi) 
s i n Ii <j>„ — 

hi 

*" (*"+£) 
e~ ^o 

If the ratio kn/kn is sufficiently small for a 
given Nim, we can replace <j>„ on the right-hand 
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side by its original value (5') and then solve for 
4>m on the left-hand side. The value so ob­
tained for /j.(j>a will evidently be smaller than 
the previous one. Under our assumptions then, 
Zn will assume values in between those in (7c') 
and (6c') of (I). 

The last stages of the reaction follow a com­
bined first-second order law. Omission of the 
second exponential in (5b) yields 

-J— » AiiVi + Ai T -
u<p £12 

That is, a second order constant -Xi and a first or­
der one — Xi &11/&12. In the limit of kn -C k®, both 
reduce to the respective values found before 
separately. 

Granting the assumptions of our theory, the 
appearance of a combined second and first order 
initiation of nuclei can, therefore, be experi­
mentally detected by means of a study of the 
influence of the initial concentration of monomer 
on the average chain length of the final polymer 
formed and by following the course of the poly­
merization, especially during its later stages. 

Mutual Stabilization of Growing Chains.—As 
discussed in the beginning, the interaction of 
polymer molecules in growth and breaking of 
active chains may become predominant or at 
least appreciable as soon as the concentration of 
monomer by number ceases to be very large 
compared with that of polymer. In an inter­
esting paper, Dostal11 has shown on the basis of 
his equations,12 that this interaction is negligible 
except for the end of the process. He furthermore 
compared the order of magnitude of the corre­
sponding rate constant with that of monomer 
growth and arrived at the conclusion that the ac­
tivation energy is less while the steric factor de­
creases. The rate should therefore be decreased 
approximately by a factor j ~ l / * arising from the 
collision number. On the other hand, in poly-
esterifications,13 one single rate, independent of 
size, describes the reaction satisfactorily. 

I t still remains to be seen how the above 
effect enters into the final distribution and how 
its extent depends upon the rate of initiation and 
cessation (due to monomer). If we assume a 

TIj + tlk > Nj+H 

process to take place, then its relative importance 
will depend upon the ratio ki/ks which in turn 

(11) H. Dostal, Monatsh., 67, 637 (1935). 
(12) Compare also the introduction of (1). 
CIS) P. J. FIory, T H I S JOURNAL, 61, 3334 (1939). 

measures the number of growing polymer mole­
cules. Melville and Gee14 have derived, ap­
parently by statistical considerations, an equa­
tion for the size distribution obtained by means 
of photo-activation of nuclei. It is not clear 
from the short discussion given, what further as­
sumptions have been made. We shall later on 
compare their expression with ours. 

I t is easy to see how this additional possibility 
of formation of stable j'-mers will affect the rate 
equations (1). The rate of decrease of monomer 
remains, of course, unchanged, while that for 
the activated chains, dnj/dt, will decrease as 
expressed in an additional term 

« 
- Kn1 E

 nU j = 1.2... 
1 = 1 

It gives the interaction of a growing j'-mer with all 
unstable chains. Consequently the rate of change 
of stable j'-mer will increase and contain an 
additional term 

-z- E nm,-r, ; | 2 
* i = i 

In the case of a first order initiation, for instance, 
we find in this manner 

j eo os / as \ 2 

gj E n< = *«M - *»»w E *i- K ( E ni J (2a) 

and correspondingly for a second order initiation. 
This equation together with that for Ni should 

now be considered. The introduction of 0 does 
not facilitate the task here and an exact solution 
is not available. An attempt at a solution by 
treating the last term as a small perturbation soon 
becomes cumbersome and furthermore does not 
lead to a result for the later stages of the reaction. 
One could consider for our purpose starting the 
other way by introducing our previous result into 
the first two terms of (2a) and then solve the 

differential equation for E ny The result can 
i 

be represented in such an involved fashion only, 
that a simplified approach must be chosen, al­
though our procedure is somewhat artificial. 

We first estimate the relative importance of the 
first two and the third term in (2a). Let, for in­
stance, kn = 10_B, &32 = 1O-4, such that kn/kw is 
not very small. At a time when about 1% of 
monomer is left, <f> « 1.6 X 104, as is found from 
our equations in (I). This gives for the two 

(14) Given in a paper by R. A. Blease and R. F . Tuckett, Trans. 
Faraday Soc, 37, 571 (1941). 
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terms, respectively: 1.6 X 10~7 and K- 6.4 X 
1O-3. With K = 1O-4, the two terms become 
about equal, when approximately 96% of mono­
mer has disappeared. On the other hand, if in 
this example we choose JVi = 8.5, <f> = 103, 
we find instead 7.5 X 10"5 and K X 10~4. 
The X-influence seems, therefore, to be important 
only when JVi has reached very small 
values, if K and k& are of the same 
order of magnitude. We neglect now 
the transition region where both terms 
are of equal importance and assume that below a 
critical instant T in the course „ 

N,{t S r) - ^ £ », 
* 7 = 1 

molecules originally present, is depleted by the 
polymer-polymer chain breaking process. 

As indicated above, the rate of increase of stable 
chains depends in our approximation upon the 

J-i 
sum E niKj-i- Solving the differential equation 

z = i 

for Nj with the aid of (9a), we find for j S 2 

(f-r) K j - i 
. I (T)«I (T)- + -V,-(r) (10) 

1 + K E »*W« - r) 

and therefrom 

of the reaction, the K-eSect E N,(t S r ) - ^ J ] J ny-iWwiM 
is negligible; for t ^ r the * j - s z - i 
reaction is entirely governed 
by our previous equations, while for t > r the rate 
constant K alone determines its course. In this 
manner we neglect the influence of the polymer-
polymer interaction on JV1 and the changes of W7-
and Nj resulting therefrom, T will correspond to 
a time when a few per cent, of the original mono­
mer only is unreacted. 

Accordingly we restrict ourselves to a treatment 
of the simplified equation (2a), obtained by re­
taining the last term on the right-hand side only. 
The solution will be valid for times t > T, while 
as boundary conditions for t = T, we have 

(Z - r ) + E W T ) (JOâ  
1 + £ 3 > , ( T ) ( < 

1 
T ) 

E n, = E nM 
i i 

where the second quantity has the value cal­
culated from equation (2) in this or in the previous 
paper, according to the assumptions made in 
regard to the initiation process. In this way we 
have 

E «*(' > 
i 

• ) = 

E *« 
1 

1 + K E %M(* - T) 

(9) 

Neglecting in the same manner all terms except 
the i£-term in the equation for the individual 

As can be seen from (9a), no unstable material 
is left at the end of the reaction, t — « . In our 
previous cases, a small amount remained un-
stabilized. Its magnitude depended upon the 
ratio of the rate of initiation to the other rates. 
When it was small, no w,- was left, in case the initia­
tion was second order, (equation 5a). If it was 
first order, the amount unreacted was very small. 
The reason for this lies in the fact that the 
monomer was consumed in all three elementary 
acts of the chain process and therefore the amount 
present was not sufficient for the stabilization of 
all growing chains. This will be true all the more 
in a first order initiation, with a more rapid con­
sumption of monomer than in a second order one. 
Because in reactions producing real high polymers, 
«i will be negligible in any case at large times t, 
the over-all course of the reaction, as expressed 
in a plot of Wp versus I, will not be changed by the 
new assumptions made. In other cases this 
change may be found from (9a) by calculating the 
quantity JVi(0) — ATi — «} and comparing with our 
previous expressions. 

The changes in the average chain length and 
in the distribution curve will of course be more 
appreciable. From (9) and (9a) we obtain 

rij, we find 

riiit 6 T) = nM E to + W'S. 

l+K E « ; ( T ) ( ' - T ) 
i 

« I ( T ) 

1 + X E " > W ( / - T ) 

(9a) 

(9a) shows how the number of growing polymer 

E (»' + Nl1r 

if we consider that 
eo J - I 

E E »>•-«»' 
. J = J Z = I 

K 
2 

E».« (t-r) 

TJfE«i(r)tf-r) 

"[? Uj 
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Therefore 

[ E «<WI C - *•) 
(z„)(^r = (Zn);1 - g ^ g L l . J (a) 

i 

The chain length obtained without the JiT-effect 
at the (large) time r will not differ appreciably 
from the final one, especially in that type of 
reaction in which the average molecular weight 
remains approximately constant after an initial 
sharp increase. We can, therefore, consider the 
second term on the right-hand side of (11) as a 
correction for the final chain length obtained 
without mutual termination of chains. As is 
to be expected, this correction is, in the limit 
t —* co, proportional to the total number of un­
stable chains present at the time the polymer 
interaction became operative. In order to ob­
tain a numerical estimation, let us consider 
the case of first order initiation. The value of 
<j> corresponding to T will not deviate considerably 
from </>„. We can therefore use (except for the 
higher end of the distribution curve) the approx­
imation for tij described in (I) and also in this 
paper for the derivation of Schulz's equation. 
Equations (4a) and (4) of (I) then yield in com­
bination with (10) 

Hm N1 « 2V,(T) + 

1 knkg ( hi Y (j — Y) ,.„, 
2 k22

2 \ku + ka) (1 - «-*•*») U ' 

(12) expresses the fact that deviations from the 
previously calculated size distribution will be 
small if kn is small in comparison with the other 
rates, or if the growth occurs too rapidly. In such 
a situation an insufficient number of unstable 
chains, contributing to the above effect, is 
formed. For Nj(r) we can write the final dis­
tribution previously obtained, in the form dis­
cussed in this paper on page 721. We find then 

(12a) 

If we set in (12a) k%j » 1O-2, <f>w of the order of 
magnitude of a few hundred thousands, cor­
responding to an average value of j of 600-800, 
we find a correction of the order of magnitude of 
10-20%. For a second order initiation, the 
limiting form of w,- for large times, previously 
derived, leads to similar conclusions for our 
correction. We can expect the polymer inter­

action to be less important, at least for small 
kn, than in the other case, because the amount 
of monomer decreases less rapidly with time. 

The correction for the reciprocal number average 
chain length of the final polymer is simply 

1 " 
2W*5 E "*« 

If in the first order case we set for instance 
kn = 10-8, kx = 10-2, &S2 = 10-5, we find a 
final number average chain length of 899. The 
above correction with Nim = 8.74, then leads 
to a value of about 950, if at the critical time T the 
uncorrected value of Zn had already reached its 
full magnitude of 899. An examination of Fig. 4 
of (I) shows that the error so committed is not 
very serious in view of the approximate nature 
of these considerations. Furthermore, if we do 
not introduce this assumption, then also a larger 

value for JZ % than the final one should con-
i 

sequently be chosen, and the result approaches 
again the one found in the simple fashion. We 
may therefore conclude that under our assump­
tions, the correction in the case of high molecular 
weight products leads to an increase of the 
number (and also weight) average molecular 
weight of about 10% over that found, if the stable 
monomer only is operative in the termination of 
the growing chains. An alternative mechanism, 
the disproportionation of growing chains14 

ni + H* —>• N) + Nk 

could be treated in a similar manner and would 
not lead to essentially different conclusions. 

Equations (12) and (12a) are not identical with 
Melville and Gee's14 size distribution for the case 
of mutual stabilization. No derivation has been 
published. It seems, however, that their premises 
are not identical with ours, but involve the sole 
action of growing polymers in the termination 
reaction throughout its course. In the same 
publication,14 reference is made to another 
equation of Melville and Gee for the size dis­
tribution. In this case their mechanisms for 
growth and cessation are identical with ours and 
the initiation is considered to be a photochemical 
reaction. Their result coincides with the one 
derived here and in the previous paper for the 
final distribution, if fa <C fa. Because under such 
conditions the result is independent of fa it holds, 
of course, for any type of initiation reaction. 
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In an interesting paper, Blease and Tuckett14 

correlate the distribution curve of polyvinyl 
acetate samples, as found by fractionation, to 
the mechanism of the cessation reaction. On the 
basis of Melville and Gee's results they conclude 
that mutual termination only is present. A ki­
netic investigation, with the aid of the theory 
presented here, should throw further light on this 
and similar points. 

In a recent paper which appeared after this 
work had been submitted for publication, Her-
rington and Robertson16 consider termination re­
actions involving two active chains only, on the 
basis of the steady state method, which is essen­
tially applicable if the rate of initiation is very 
small. Their results are of the same functional 
type as the second term in (12a), which gives 
rise to a maximum in the Nfj curve. 

The iT-effect does not change our previous 
conclusions in respect to the dependence of the 
final chain length upon the initial concentration. 
In how far it affects the approximate constancy 
of the average molecular weight previously 
found, is difficult to decide on the basis of our 
equations. A sudden introduction of the possi­
bility of mutual interaction of growing chains, 
as assumed here, will of course cause Zn to in­
crease suddenly. One may expect that a grad­
ual onset will not cause considerable changes. 
They will, however, be more noticeable in the 
weight average than in the number average mo­
lecular weight which is less influenced by the 
addition of a relatively small number of longer 
chains. 

Further Aspects.—Limitations of the theory 
presented in these papers have already been 
pointed out in the introduction to publication 
(I). In an extension of these investigations, 
three problems arise. First, the chain polymeri­
zation need not necessarily be described by three 
constant parameters; the further possibility of 
time dependent rates should be considered. 
They would express the changes in the mecha­
nisms of the elementary steps due to structural 
and concentration variations during the course 
of the reaction. In the light of our present 
experimental knowledge of this subject, it seems 
that any quantitative treatment of the rate 
equations in this fashion must, of necessity, re­
main purely formal in character. Our treatment 

(15) E. F. G. Herrington and A. Robertson, Trans. Faraday. 
Soc, 38. 490 (1942). 

of the mutual termination of growing polymer 
chains is a step in this direction. 

Second, the question of the branching and 
cross linking of growing chain molecules, which 
was briefly mentioned in the beginning of (I), 
should be further considered although, again, 
experimental material is scant. The methods 
developed here would lead to rather complicated 
expressions if one attempted to calculate the time 
dependence of the chain length distribution of 
the numerous species of molecules possible. 
A statistical approach promises more success. 
As has been shown previously, probability con­
siderations can be applied to obtain the final 
size distribution if it is determined solely by the 
interaction of growth and cessation; in other 
words the rate of initiation must be small. This 
is the important case which can lead to the forma­
tion of high molecular weight material. Results 
in this direction have been obtained by Schulz16 

and recently by Flory.17 The latter author 
gives a statistical theory of the formation of three-
dimensional polymers in polycondensation proc­
esses. His results, however, should apply also 
to chain polymerizations under the above-
mentioned restrictions. 

Last, a similar situation is encountered when 
one considers copolymerization. Again a treat­
ment of the rate equations is possible only by 
means of approximation methods with a re­
stricted range of applicability.18 Part of this 
problem, namely, the intramolecular arrangement 
of the two polymerizing species in a chain, has 
already been considered in a statistical fashion.19 

In a paper to appear,20 the kinetics and size dis­
tribution of copolymers are investigated for the 
limiting case mentioned above. 

Appendix 

2. The Relation between <j> and t for Real 
Roots Xi and X2.—From (6) and (5) we have 

rr r - r («32 + M)t(<fr) = I jr • 

(«32 + Xl) 

Setting 
«32 + X2 _ 

«32 + X l ^ 

(16) G. V. Schulz. Z. physik. Chem.. B44, 227 (1939). 
0 7 ) P. J. Flory, T H I S JOURNAL, 63, 3083, 3091. 3096 (1941). See 

also N. H. Stockmayer, J. Chem. Phys., U , 45 (1943). 
(18) See F. T. Wall, T H I S JOURNAL, 63, 1846 (1941). 
(19) F. T. Wall, ibid., 63, 803 (1940); 63, 821 (1941); R. Simha, 

ibid., 63, 1479 (1941). 
(20) H. Branson and R. Simha, J. Chem. Phys., in press. 



April, 1943 ON THE KINETICS OF POLYMERIZATION REACTIONS 727 

We find for the indefinite integral by expansion 
of the denominator 

V I dxe-Xi* (f e-KXi-Xs)* = 
r = o J 

Y 3r f e-Pu+KXi-Xi)]* dx = 
f = 0 J 

e — Xw _ , e _ r ( x , —X,)* 

*•! — ^s . _ n , Xl 
r + Xl — Xj 

Determination of the integration constant to give 
<f> = 0, for t = 0, then leads to the result given 
in the text. I t holds in the whole range of <j> 
because q < 1, and (Xi-X?) > 0. The series 
expansion is therefore convergent throughout. 

2. Formulation of Relations for the Deter­
mination of the Weight Average Molecular 
Weight.—The rate equations (1) yield 

d * / 
Y Jn1 = - (k22 + hi) Y 3ni + *»« E 3*i-i 

i - i j-2 

Now 

; ' -2 j = 2 j-1 i~\ }-=\ 

and therefore 

-Tl YJ 3ni + kii
 YJ 3ni " *«» 

"Pj =2 j = 2 

We find from (1) furthermore 

I MI + X ) w>) (A) 

Writing 
j 2 = (j - I ) 2 + 2 7 - 1 

in the last term of the right-hand side, we arrive 
at the equation 

CO OO / » CO \ 

-Ti Y ^ i +k** Y j'n<= M3ni + Y j*1*+Y n<) 
a9j-t j-2 \ i - 2 j - 1 / 

(B) 

Knowing Y Jnj from (A), we can solve (B). 
i - 2 

Finally we have from (1) 

A E - W - * I I E ^ - « -
/ CO CO CO \ 

M E ^ + ^ + E-fa + E*) (C) 
\ i = 2 y=2 i - i / 

using the same transformation as in the deriva­
tion of (B) to arrive at the last expression. In 
this manner the weight average chain length, 
as defined in the appendix of (I), can be cal­
culated with the aid of our equations (5) for n\ 

CO 

and E nv 
i - i 

Summary 

The considerations of the previous paper are 
extended to second order initiation of monomer. 
Again two limiting cases are found. A compari­
son of this case with the previous one, shows 
that second order initiation gives rise to a product 
with a smaller final average molecular weight. 
Only if the rate of initiation is vanishingly small, 
do the results become identical. No dependence 
of the final mean chain length on the initial 
concentration is found. The effect of the mutual 
termination of growing chains on the final 
average molecular weight and the size distribution 
is considered in an approximate manner. Possible 
extensions of this theory are pointed out. 
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